UDC 636.2:591.16:577.125.33:577.334

doi: 10.15389/agrobiology.2014.6.107eng

FREE RADICAL LIPID OXIDATION AND REPRODUCTIVE HEALTH OF COWS

V.A. Safonov1, A.G. Nezhdanov2, M.I. Retsky2, S.V. Shabunin2,
G.N. Bliznetsova2

1V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19, ul. Kosygina, Moscow, 119991 Россия, е-mail geokhi.rus@relcom.ru;
2All-Russian Research Veterinary Institute of Pathology, Pharmacology and Therapy, Russian Academy of Agricultural Sciences, 114-b, ul. Lomonosova, Voronezh, 394087 Russia, е-mail vnivipat@mail.ru, retsky@mail.ru

Received March 19, 2014


Free radical lipid oxidation is currently considered as one of the dominant metabolic processes of physiological system functional activity. When it goes beyond regulated limits it is considered as an inductor of free radical pathology oxidative stress. In the conditions of a big dairy cattle breeding farm (Voronezh Province), specialized in Red-and-White breed, the functioning peculiarities of the peroxidation system lipid-oxidant defense in cows at the normal course of gestation and at gestosis, at the normal course of postpartum period and at puerperal endometritis, uterus subinvolution and ovarian dysfunction were studied. The state of lipid peroxidation processes and antioxidant system were evaluated by determining total lipid content, cholesterol, triglycerides, malonic dialdehyde (MDA), nitrogen oxides (NO·), E and C vitamins concentrations, glutathione peroxidase (GPO), glutathione reductase (GR), catalase, superoxide dismustase (SOD) activity in blood. It is demonstrated that the high activity of lipid peroxidation reactions and the system of nitrogen oxide at decrease of antioxidant defense non-enzymic link capacity is the basis of gestosis and acute postnatal complications. Thus, аn increase of MDA concentration by 42.3-43.0 %, NO· by 31.9-38.0 % was observed in cows with gestosis. At mild gestosis the glutathione peroxidase activity, catalase activity and vitamin C concentration increased by 11.0 %, 14.3 %, 38.0 %, and 24.1 %, respectively, while vitamin Е concentration decreased by 11.7 % due to more consumption for neutralization of the toxic peroxidation products. At more sever pathology, the glutathione peroxidase activity and catalase activity in blood increased by 26.0 % and 17.3 %, respectively, when compared to the healthy animals, while vitamins E and C concentrations decreased by 33.3 % (р < 0,01) and 17.2 %, respectively. As free radical oxidation intensified, an anaerobic degradation of carbohydrates was activated to supply the tissues of developing fetus with energy under oxygen deficit occurred because of violation of the blood circulation. Postpartum inflammation in the genital organs in cows developed against the background of increase of MDA concentration by 76.0 %, GPO and GR activity by 65.8 % and 14.6 %, respectively, SOD by 46.0 %, catalase by 45.7 %, 2.9 times increase of NO· concentration and reduction of vitamin E content by 35.5 %. Infertile animals with ovarian dysfunction were characterized by high activity of lipid peroxidation processes and by low level of nitrogen oxide generation. This is indicated by an increased concentration of MDA by 57.0 %, activity of GPO by 27.6 %, GR by 10.5 %, SOD by 31.9 %, catalase by 24.3 %, with a reduced content of NO· and vitamin E by 56.9 % and 31.6 %, respectively, in comparison with healthy animals. A decrease in NO· concentration in blood could result from a sharp depression of hormone synthesizing function in ovaries, and low NO· production could disturb functions of the gonads. The high level of peroxidation is peculiar to animals with chronic uterus pathology, however, it is less expressed than in cows with acute course of the pathological process.

Keywords: cows, blood, lipid peroxidation, gestation, postpartum period, norm, pathology.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

1. Sidorov I.V., Kostromitinov N.A. Selskokhozyaistvennaya Biologiya [Agricultural Biology], 2003, 6: 3-12.
2. Retskii M.I. Sistema antioksidantnoi zashchity u zhivotnykh pri stresse i ego farmakologicheskoi regulyatsii. Doktorskaya dissertatsiya [Antioxidant defense in animals under stress and its pharmacological regulation]. Voronezh, 1997.
3. Elster E.F., Osswald W., Konge J.R. Reactive oxygen species; electron donor—hydrogen peroxide complex instead of true OH radicals? FEBS Lett., 1980, 121(2): 219-221.
4. Kunwar Amit, Priyadarsini K.I. Free radicals, oxidative stress and importance of antioxidants in human health. J. Med. Allied Sci., 2011, 1(2): 53-60.
5. Zenkov N.K., Lankin V.Z., Men'shikova E.B. Oksidativnyi stress. Biokhimicheskii i patofiziologicheskii aspekty [Oxidative stress: biochemical and pathophysiological aspects]. Moscow, 2001.
6. Valko M., Rhodes C.J., Moncol J., Izacovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 2006, 160: 1-40. CrossRef
7. Dubinina E.E. Ukrainskii biokhimicheskii zhurnal, 1992, 64(2): 3-15.
8. McCord J.M., Fridovich I. The purification and crystallization of beef erythrocyte superoxide dismutase. J. Biol. Chem., 1969, 244(2): 6049-6056.
9. Evstigneeva R.P., Volkov I.M., Chudikova V.V. Biologicheskie membrany, 1998, 15(2): 119-137.
10. Erin A.I., Skrypin V.I., Prilipko L.L., Kagan V.E. V sbornike: Kislorodnye radikaly v khimii, biologii i meditsine [In: Oxygen radicals in chemistry, biology and medicine]  . Riga, 1988: 109-129.
11. Fukuzawa K., Inokami Y., Tokumura A., Terao J., Suzuki A. Singlet oxygen scavenguing by α-tocopherol and β-carotene: kinetic studies in phospholipid membranes and ethanol solution. Biofactors, 1998, 7(1-2): 31-40. CrossRef
12. Takahisa D., Burtan G.W., Ingold K.U. Antioxidant and coantioxidant activity of vitamin C. The effect of vitamin C either alone or in the presence of vitamin E a water-soluble vitamin E analogue iron the peroxidation of aqueous multilamellar phospholipid liposomes. BBA, 1985, 835(2): 298-303.
13. Kalyanaraman B., Darley-Usmar V.M., Wood J., Joseph J. Synergistic interaction between the probucol phenoxyl radical and ascorbic acid in inhibiting the oxidation of low density lipoprotein. J. Biol. Chem., 1992, 267(10): 6789-6795.
14. Chatteriee T.B., Nandi A. Ascorbic acid: A scavenger of oxyradicals. Indian J. Biochem. Biophys., 1991, 28(4): 233-236.
15. Voskresenskii O.N., Bobyrev V.N. Voprosy meditsinskoi khimii, 1992, 38(4): 21-26.
16. Manukhina E.B., Malyshev I.Yu. Biokhimiya, 1998, 63(7): 992-1006.
17. Murphy M.P. Nitric oxide and cell death. BBA, 1999, 1411(2-3): 401-414. CrossRef
18. Laskin J.D., Heck D.E., Gardener C.R., Laskin D.L. Prooxidant and antioxidant functions of nitric oxide in liver toxicity. Antioxid. Redox. Signal., 2001, 3(2): 261-271. CrossRef
19. Ivashkin V.T., Drapkina O.M. Klinicheskoe znachenie oksida azota i belkov teplovogo shoka [Clinical role of nitric oxide and heat shock proteins]. Moscow, 2001.
20. Retskii M.I., Mikhalev V.I., Bliznetsova G.N., Pas'ko N.V. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Aktual'nye problemy boleznei organov razmnozheniya i molochnoi zhelezy» [Proc. Int. Conf. «Actual aspects of diseases of reproductive organs and mammary gland»]. Voronezh, 2005: 382-385.
21. Erusalimsky J., Moncada S. Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler. Tromb. Vasc. Biol., 2007, 12: 2524-2531. CrossRef
22. Murphy M.R. How mitochondria produce active oxygen species. Biochem J., 2009, 417(1): 1-13.
23. Dobashi K., Pahan K., Chanal A., Singh I. Modulation of endogenous antioxidant enzymes by nitric oxide in rat C6 glial cells. J. Neurochem., 1997, 68(5): 1896-1903.
24. Ulker S., McMaster D., McKeown S., Bayraktutan U. Impaired activities of antioxidant enzymes elicit endothelial dysfunction in spontaneous hypertensive rats despite enhanced vascular nitric oxide generation. Cardiovasc. Res., 2003, 59(2): 488-500. CrossRef
25. Karmoliev R.K. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2002, 2: 19-28.
26. Buzlama V.S. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Svobodnye radikaly, antioksidanty i zdorov'e zhivotnykh» [Proc. Int. Сonf. «Free radicals, antioxidants and animal health»]. Voronezh, 2004: 183-186.
27. Shoham A., Hadziahmetovic M., Dunaief J.L., Mydlarski M.B., Schipper H.M. Oxidative stress in diseases of the human cornea. Free Radic. Biol. Med., 2008, 45(8): 1047-1055. CrossRef
28. Kolchina A.F. Fetoplatsentarnaya nedostatochnost' i toksikozy beremennykh korov v tekhnogenno zagryaznennykh regionakh Urala i metody ikh profilaktiki. Doktorskaya dissertatsiya [Fetoplacental deficiency and toxicoses in pregnant cows in the industrially polluted territory of the Ural region and their prevention. DSc Thesis]. Voronezh, 2000.
29. Nezhdanov A.G., Retskii M.I., Kushnir I.Yu. Uchenye zapiski Vitebskoi ordenaznaka pocheta gosudarstvennoi akademii veterinarnoi meditsiny (Vitebsk), 2001, 37(2): 115-116.
30. Safonov V.A., Bliznetsova G.N., Nezhdanov A.G., Retskii M.I., Konopel'tsev I.G. Doklady RASKHN, 2008, 6: 50-52.
31. Yarovan N.I. Biokhimicheskie aspekty otsenki, diagnostiki i profilaktiki tekhnologicheskogo stressa u sel'skokhozyaistvennykh zhivotnykh. Avtoreferat doktorskoi dissertatsii [Biochemical aspects of estimation, diagnostics and prevention of technological stress in agricultural animals. DSc thesis]. Moscow, 2008.
32. Kuz'mich R.G. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Sovremennye problemy veterinarnogo obespecheniya reproduktivnogo zdorov'ya zhivotnykh» [Proc. Int. Conf. «Veterinary control of reproductive health in animals: recent problems»]. Voronezh, 2009: 239-244.
33. Augoulea A., Mastorakos Y., Lambrinoudaki I., Christodoulakos G., Creatsas G. The role of the oxidative-stress in the endometriois-related infertility. Gynecol. Endocrinol., 2009, 25(2): 75-81. CrossRef
34. Tatone C., Amicarelli F., Carbone M.C., Monteleone P., Caser-
ta D., Marci R., Artini P.G., Piomboni P., Focarelli R. Cellular and molecular aspects of ovarin follicle ageing. Hum. Reprod. Update, 2008, 14(2): 131-142. CrossRef
35.  impact on female fertility. Hum. Reprod. Update., 2008, 14(4): 345-357. CrossRef
Retskii M.I., Shakhov A.G., SHushlebin V.I., Samotin A.M. Metodicheskie rekomendatsii po diagnostike, terapii i profilaktike narushenii obmena veshchestv u produktivnykh zhivotnykh [Recommendation on diagnostics, therapy and prevention of metabolic disturbance in high-yielding animals]. Voronezh, 2005.
37. Bliznetsova G.N., Ermakova N.V., Mukhammed Z.D., Retskii M.I. Vestnik VGAU. Seriya: Khimiya. Biologiya, 2002, 1: 55-60.
38. Antonov B.I., Yakovleva T.F., Deryabina V.I., Sukhaya N.A., Bashkirov G.G. Laboratornye issledovaniya v veterinarii: Spravochnik [Laboratory survey in veterinary: handbook]. Moscow, 1991.
39. Velichkovskii B.T. Pul'monologiya, 2000, 10(3): 3-9.
40. Moreno A.S., Franci C.R. Estrogen modulates the action of nitric oxide in the medial preoptic area on luteinizing hormone and prolactin secretion. Life Sci., 2004, 76(16): 2049-2059 (http://www.ncbi.nlm.nih.gov/pubmed/14967199).
41. Coughlan T., Gibson C., Murphy S. Modulatory effects of progesterone on inducible nitric oxide synthase expression in vivo and in vitro. J. Neurochem., 2005, 93(4): 932-942. CrossRef
42. Dixit V.D., Parvizi N. Nitric oxide and the control of reproduction. Anim. Reprod. Sci., 2001, 65: 1-16.
43. Tamanini C., Basini G., Grasselli F., Tirelli M. Nitric oxide and the ovary. J. Anim. Sci., 2003, 81: E1-E7.
44. Shabunin S.V., Nezhdanov A.G. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi 85-letiyu so dna rozhdeniya professora G.A. Cheremisinova i 50-letiyu sozdaniya Voronezhskoi shkoly veterinarnykh akusherov «Sovremennye problemy veterinarnogo akusherstva i biotekhnologii vosproizvedeniya zhivotnykh» [Proc. Int. Conf. «Actual issues of veterinary obstetrics and animals’ reproductive biotechnologies»]. Voronezh, 2012: 10-20.

back